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Abstract
We give statistical definitions of the length, l, of a loose prime knot tied into a
long, fluctuating ring macromolecule. Monte Carlo results for the equilibrium,
good solvent regime show that 〈l〉 ∼ Nt , where N is the ring length and
t � 0.75 is independent of the knot type. In the collapsed regime below the
theta temperature, length determinations based on the entropic competition of
different knots within the same ring show knot delocalization (t � 1).

PACS numbers: 02.10.Kn, 36.20.Ey, 05.70.Jk, 82.35.Lr, 87.15.Aa

Long polymers are remarkable systems in which topological entanglement is almost
unavoidable [1, 2] and shows consequences pertaining to many different scientific contexts.
In chemistry the synthesis of macromolecules with nontrivial topology, such as catenanes, is
well established [3]. The role of knots and links in the biology of DNA and the existence
of enzymes such as topoisomerases, which control these entanglements, have been at the
basis of an explosion of interest in topology among biologists, chemists, mathematicians, and
physicists since the 1980s [4, 5]. Most recently, techniques for manipulating single molecules
opened new possibilities of knot creation and study [6, 7].

In all these examples knowledge of the degree of localization of the knots within the
chains is of primary importance. The action of topoisomerases [4, 5] certainly depends on
how localized the topological entanglement is [8]. The folding dynamics of a knotted protein
[9] should also be strongly influenced by the tightness of the knot. When a knot diffuses along
a DNA molecule stretched by molecular tweezers, the length of the entangled region is also
essential since it determines the diffusion coefficient. If the knot is tight enough this length
can be approximated by that of the knot in its ideal form [7]. An ideal knot is realized with the
shortest piece of rope of constant diameter and is the only one for which a precise definition of
length exists [10–12]. Of course, this model is inadequate if the molecule is not well stretched
and the knotted region fluctuates substantially.

In spite of several indications that prime knots of polymers in good solvent are rather
well localized [13, 14], proofs and direct quantitative descriptions of this localization are
still missing. This is primarily due to difficulties related to the notion of a knotted open
string [15]. Indeed, to localize the knot requires to identify an open portion of the ring
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Figure 1. Once extracted the open string portion (AB) from the SAP, we determine its centre of
mass C. An off-lattice planar 4-edges polygonal is attached to the extrema A and B. The polygonal
lies on the plane CAB. D, E and F are all chosen far away from C in order to avoid additional
entanglement with the open string.

which is ‘knotted’. However, to assert that an open piece of a closed rope ‘contains’ a
knot is ambiguous. Mathematically there are no knots in an open string since continuous
deformations can always bring it into an unentangled shape. Substantial progress in the
description of localization properties of topological entanglement has been made for flat knots
[16]. These models describe three-dimensional knotted polymers fully adsorbed on a plane
with the simplifying feature that the number of overlaps is restricted to the minimum compatible
with the topology. In this way knot length can be defined and studied both numerically and
analytically [17]. It was also discovered that flat knots become delocalized when the adsorbed
polymer undergoes theta collapse [18, 19]. A demonstration of the conjectured [18] analogous
delocalization phenomenon for compact knotted polymers in three dimensions remains an open
challenge [20].

In this letter we propose a statistical description of the lenght, l, of a knot within a circular
fluctuating polymers with N monomers. We find that 〈l〉 ∼ Nt with t � 0.75 in the good
solvent regime (weak localization), and t � 1 (delocalization) in the collapsed phase [21].

We consider knotted self-avoiding polygons (SAP) on cubic lattice, which are a good
model for long polymers in a good solvent [21]. If necessary, a theta collapse [21] into
compact configurations can be induced by switching on an attractive interaction between the
nearest-neighbour lattice sites visited not consecutively by the SAP [18] and by lowering
enough the temperature T. N is the number of lattice edges occupied by the SAP. A BFACF
Monte Carlo dynamics [22] preserving the topology of the SAP [23] enabled the sampling of
equilibrium configurations of chains of variable N. To increase mobility a multiple Markov
chain [25] in the space of the edge fugacity was implemented.

A first strategy of knot length determination is as follows. In each sampled configuration,
various open portions of the SAP are considered and for each of them a closure is made by
joining its ends, A and B, with an off-lattice path (figure 1). This path is chosen in order to
minimize the risk of knot modifications or disentanglements in the resulting new ring. This
risk cannot be fully avoided and is a possible source of systematic errors. Once the new
ring has been constructed, the computation of a topological invariant, namely the Alexander
polynomial [26] �(z) at z = −1, allows us to verify the presence and the type of knot1. The

1 In fact the Alexander polynomial is not a complete invariant, and is unable to distinguish every knot-type. For
instance the prime knot 811 has the same Alexander polynomial as the composite knot 31#61, and 815 has the same
Alexander polynomial as 31#72. To distinguish pairs of knots we have also computed �(−2).
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Figure 2. 〈l〉 of the trefoil (31) knot as a fuction of N. The configurations sampled were ∼106 in
total. The brackets 〈·〉 denote averages taken over data binned around fixed values of N. The inset
shows the log–log version of the plot.

length l of the knot in a given SAP configuration can then be identified with the shortest ring
portion still displaying the original knot among a large set obtained by several cutting and
closing operations2. The plot of the average length of a trefoil knot (31) [26] as a function of
N (figure 2) shows full consistency with the scaling law

〈l〉 ∼ Nt (1)

with t = 0.74 ± 0.14 which is also robust with respect to a change of prime knot type. For
example, if we replace the 31 by a 41 or 51 knot [26], equation (1) remains valid with the
same t within confidence limits. Unfortunately, one cannot estimate the possible systematic
errors arising from the cutting and closing procedure used in this analysis3, which would be a
serious handicap for applications to compact polymers. Thus, one needs to validate the law in
equation (1) by alternative, consistent methods of length determination.

Consider a SAP partitioned into two loops by a narrow slip link. Each loop is tied into
a 31 knot and the Monte Carlo dynamics is such that each knot cannot translocate from its
loop to the other one (figure 3). The two loops also remain unlinked. Since the number of
configurations for the whole ring is maximum when one of the loops is much longer than the
other one, most configurations break the symmetry between the two loops showing a marked
length unbalance. Typically, in one of the two loops the knot has a very large share of the whole
ring at its disposal, while the other loop is just long enough to host its knot. Consenquently,
we always choose to identify the length of the shorter loop with the length, l, of a trefoil knot
inserted in a SAP. Such l is always sampled now in situations in which the two ends of the
knot come close to each other in the neighbourhood of the slip link. However, one can hope

2 Details will be given elsewhere.
3 Similar procedures were used in [14, 15] without addressing asymptotic properties like equation (1). For N = 500
our algorithm misidentifies ∼5 out of 1000 unknotted SAPs, a much better rate than that reported in [14] for phantom
rings.
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Figure 3. Sketch of a 31 knot (right) forced to its typical length by the entropic competition
between knotted loops. To simulate the slip link we impose the constraint that two fixed parallel
edges of the polygon have always to be kept one lattice distance apart (see footnote 2).

100 200 300 500 700 1000 1500 2000

N

100

200

300

500

700

1000

<
l>

 

3
1 

vs 3
1

3
1 

vs (3
1 

# 3
1
)

4
1 

vs 4
1

3
1 

vs (3
1
 # 3

1 
# 3

1
)

Figure 4. Log–log plot of the average value of the length l of the shortest loop as a function of N.
Different curves correspond to the presence of different knots in the two loops. Best-fit estimates
of t are 0.74 ± 0.05, 0.75 ± 0.03, 0.77 ± 0.10, 0.74 ± 0.05 for 31 versus 31, 31 versus 31#31,

41 versus 41 and 31 versus 31#31#31, respectively.

this statistic to be representative of more general samples if laws such as equation (1) are
considered. Indeed, for the average of this l the power law behaviour reported in equation (1)
still holds, with t = 0.74 ± 0.05, consistent with the previous estimate (figure 4). In the case
of two unknotted loops we verified that the average length of the shorter one does not grow
appreciably with N, further supporting our interpretation of l as the knot length in the 31 versus
31 case.

This last method of length determination needs a suitable competition between the
two loops4 [27]. If only one of them were left unknotted, a too strong dominance of the
knotted loop would result, making it almost impossible to sample configurations in which

4 An entropic competition between independent knotted loops was recently studied in [27].
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the longest loop is the unknotted one. Indeed, since the knot is rather localized, its freedom
to place itself along the loop multiplies the number of configurations accessible in its absence
by a factor roughly proportional to the length of the loop itself. By putting a 41 knot against
another 41 knot, within error bars, we found the same value of t (figure 4). Thus, like in the
previous strategy, t appears universal with respect to the prime knot type. We also carried out
simulations in which one loop contained a trefoil, while the other was tied into a composite
knot made, e.g., by the product 31#31 of two trefoils [26]. In this case the loop hosting the
composite knot almost constantly dominates in length because both components are rather
localized and free to move independently along it. In spite of the different conditions of
entropic balance, we verified that in this case also the average length of the (shorter) loop with
a single knot satisfies equation (1) with the same t ∼ 0.75 (figure 4).

The above results have implications for the leading scaling correction to the singular
behaviour of quantities such as the average radius of gyration of the SAP,

〈
R2

g

〉1/2 ∼
ANν(1+BN−�). Field theoretical renormalization group (RG) methods [28] and most Monte
Carlo techniques [29] allow us to determine exponents such as ν � 0.588 and � ∼ 0.50 in
ensembles in which configurations with all possible ring topologies are sampled. ν is believed
to remain the same in ensembles such as those considered here, with fixed knot topology [13].
With our first cutting and closing method, we could check that the ring portion occupied by
the knot has an average radius of gyration ∼lν0 , with ν0 � 0.60 � ν. This means that a length
diverging as 〈R0〉 ∼ Nνt exists in addition to the leading one

〈
R2

g

〉1/2 ∼ Nν . Standard scaling
arguments then lead to expect a possible strong correction exponent � = 1 − t ∼ 0.25 for
the ensemble with fixed knot topology. Such stronger correction could be quite difficult to
identify numerically at relatively short5 N [30].

Our strategy based on entropic competition has the advantage of being applicable also
to situations in which the polymer is compact. Indeed, since this method does not involve
cutting and closing procedures, there is no risk that the knot topology gets altered, a highly
probable event for compact configurations. This enabled us to address another key open issue
in the field; namely the possible occurrence of knot delocalization in the compact regime [18].
We included nearest neighbour attractive interactions for the two loop model and simulated
it extensively at T ∼ 0.53Tθ , where Tθ is the theta temperature [21, 25]. Below the theta
point it becomes more difficult to sample long SAP configurations. Indeed, at T < Tθ , as the
critical edge fugacity is approached from below, the grand-canonical average number of SAP
edges, 〈N〉gc, undergoes a first-order infinite jump from a finite value, rather than growing
continuously to infinity as in the T > T� case. In spite of this difficulty, we could get rather
clear evidence that the canonical average 〈l〉 grows linearly with N up to N ∼ 700, implying
t � 1, for the case of two competing 31 knots (figure 5). Like when dealing with the good
solvent regime, in order to interpret the length of the shorter loop as the knot length, it is
important to check what happens to the length of a loop without knot. We got evidence that
in the compact regime an unknotted loop is also delocalized, i.e. shows an average length
proportional to N. However, the proportionality constant is about one order of magnitude
smaller than that observed for the knotted loop in figure 5. Thus, knot delocalization seems
to superimpose itself to a phenomenon of unknotted loop delocalization which is qualitatively
similar, although quantitatively much less pronounced. The entropic competition between
loops in the compact phase does not lead to a strong prominence of one of them on the other,
like at high T. In contrast, all loop length ratios are realized with comparable probability.

5 However, accurate studies of the effects of topological constraints on scaling, as in Dobay et al [30], should
take it into account. An attempt to determine � from the response of a knotted polymer to an applied force gave
� = 0.6 ± 0.1, which was interpreted as implying t � 0.4 (see Farago et al [30]).
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Figure 5. Plots of 〈l〉 of the shortest loop as a function of N. Both curves correspond to the
presence of one 31 in each loop. The bottom curve refers to T � T� whereas the top curve refers
to T < T�.

In this new scenario also the entropic mechanisms determining knot localization in the good
solvent case cease to be active.

The delocalization of prime knots in compact polymer rings opens intriguing perspectives
on how topological entanglement combines with more geometrical measures of complexity in
polymers. One such measure for a fluctuating SAP is the mean number of crossings, Nc, one
obtains by projecting on all possible planes a given configuration [15]. This quantity can also
be studied for ideal knots [10], and has been shown to be correlated with the mobility under
electrophoresis of non-ideal knotted polymer rings with the same topology [31]. For ideal
knots, Nc is expected to grow as l

4/3
id , where lid is the length of the knot (four thirds power

law) [11, 12]. For fluctuating, non-ideal polymers one can consider the average of Nc over all
configurations. It is expected that quite generally, for a compact SAP, 〈Nc〉 ∼ N4/3 [32]. This
result should indeed hold even for open walks and be independend of the topology for knotted
SAP. The fact that we find 〈l〉 ∼ N for a fluctuating, knotted compact SAP suggests that for
real knotted polymer rings a statistical generalization of the four third power law of ideal knots
should hold: 〈Nc〉 ∼ 〈l〉4/3. In the case of ideal knots the growth of lid corresponds to an
increase of the topological complexity of the knot considered [11, 12, 31]. For real knotted
rings the topology remains fixed with increasing N, while fluctuations are able to produce the
same type of growth of 〈l〉 versus 〈Nc〉.

In conclusion, we gave a consistent and robust statistical description of the localization
properties of prime knots in polymers. Weak localization and delocalization hold in the good
solvent and collapsed regimes, respectively.
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